

[•] Ieletónica

Telefónica Investigación y Desarrollo

Business models in EuQoS

José Enríquez Gabeiras Telefónica I+D

EuQoS: Who we are

- 5 network providers (Prime Contractor is Telefonica)
- 5 Corporates
- 5 SMEs (consultants, small development companies)
- 9 Research Institutes

EuQoS Approach

Support the evolution of the Internet into a multi-service network

Take a pragmatic approach

Sell QoS as a new source of revenue.

Define business models

€9.5M Funding over 3 years Kick-off 1 September 2004

What we are doing:

Business models in EuQoS

The first steps for building the solution

- Requirements
 - Business and marketing
 - Users
 - Providers
 - Regulation
- Build the different conceptual models
 - Business
 - Communication
 - QoS
- Design of scenarios of application
 - Scenario 1
 - Scenario 2

• ...

Information Societ

Financial and market requirements

- Network & service providers =\$
- Charging plan: tariff by session
- Charging as a function of QoS
- Marketing aspects
 - Easy to demonstrate
 - Different user communities
- 3 year horizon
- Deployment:
 - Compatibility with existing solutions: large scale deployments
 - Simplicity: leverage off-the-shelf components and low-cost solution

End user requirements

- Low tariffs!
- The benefits must be clear
 - Best than BE
- QoS concept from the pov of the user
 - Easy to understand
- Plug and play
- Dynamic invocation:
 - QoS per session
 - The same application with different QoS levels
- Different commercial packages
- Monitoring capacities are desirable

Provider requirements

- To sell services to end users!
- Ubiquity
- Seamless service
- Different solutions for different services
- Simplicity of the solution
 - Easy to deploy
 - Easy to manage
 - Easy to charge
 - Easy to sell
- Support of wholesale/retail models

System, architecture, and standards requirements

- The system must be scalable
- Interoperability with existing equipment
- Independent from software platform
- Support for existing and future standards
 - When necessary, contribute new standards

	E EMERGING		
MPEG 2 MPE Video Servers	G 4		
BGP-4 RSVP DiffServ	COPS IGMP PBNM SOAP	PCE NSIS SAP MPBGP/BGP qBG P+/B GRP	
xDSL ATM DSLAMS WiFi MPLS LAN QoS	Ethernet DSLAMS WiMax Ethernet 1 st mile UMTS QOS GMPLS QOS		
Radius	Diameter		
	December	>	

Information Society

Business reference model

- Service technical description.
- Potential kinds of customers.
- Potential kinds of providers.
- Added value for the customers (non technical view).
- Potential charging models (especially those more innovative).
- Service configuration:
 - Needs from the underlying network.
 - Physical interfaces.
 - Specific required hardware and software.
 - Traffic characteristics.
 - Bandwidth requirements.

Scenarios for EuQoS

- 1. The benefits of being an EuQoS customer
- 2. Increasing service provider revenues from the residential user
- 3. New solutions for large corporations
- **4.** Interactive events
- 5. Enhanced CRM (Customer Relationship Management) services
- 6. Solutions for healthcare corporations

S1: The benefits of being an EuQoS customer

S3: New solutions for large corporations

S5: Enhanced CRM (Customer Relationship Management) services

Solutions for healthcare corporations

€U⊖OS

EuQoS solution:

- technology-independent layer added
- QoS signalling capabilities added to the applications (terminals)

End-to-end QoS connection

Connection control in NGN: QoS is needed

EU .

Models for resource management: *tight control* vs. *loose control*

EUOS

The most relevant question in the provision of QoS is the **level of control exerted over each individual connection**.

Tight control

- Centralized vision of the resources in use
- The connection requests are accepted or rejected on an individual basis.
- The requests, acceptations and reservations are managed independently for the two directions in the communication path.
- Low scalability
- Reservation per flow
- Stateful information management in all points

+ control by the end user

- flexibility for service creation and management

Loose Control

- Distributed vision of the resources in use
- The connection requests are accepted or rejected on an individual basis, but based on a virtual reservation of the previously dimensioned resources.
- High scalability
- Reservation mechanisms based on the global demand
- Stateful information management in few points

- control by the end user
- + flexibility for service creation and management

The change of the operator's role in the new network architecture

- - The operator sells network services, based on objective magnitudes (QoS, security)
 - The end services providers are coordinated with the operator
 - The operator only controls the network signalling, but not the application signalling

Contr

The long term vision

Report from IRTF e2e Group

- How might the computing and communications world be materially different in 10 to 15 years, and how might we define a research agenda that would get us to that world?
 - Technology at the edge—an access infrastructure for next generation devices.
 - A universal system for location
 - Anti-Scale: small networks
 - Assume Quantum Computers Work
 - Giving everything a presence in cyberspace
 - Reduce the energy required for communications
 - Embrace the software radio revolution

The evolution will further migrate intelligence and control to the endpoints of the communication.

- A new design for secure, robust operation.
- Operation in times of crisis
- Rethinking the Control/Data Plane Dichotomy

The network core will evolve for more security and reliability.

Source: "Making the world (of communications) a different place", IRTF e2e Research Group, 01/05

Evolution of the user/operator relationship

Controlled by the operator

Controlled by the user

