Dynamic Control of Inter-Network QoS Agreements (IST Ambient Network project)

Paulo Mendes

Senior Researcher Self-organized Ambient Networking DoCoMo Euro-Labs mendes@docomolabs-euro.com

First European Workshop on End-to-End QoS in the Internet

2005-06-21

1

Overview

- Ambient Scenario
- Problem Statement and Requirements
- Related Approaches
- Our Solution
 - General characteristics
 - Functional and Applicability Examples
- Prototype and Evaluation
- Development Steps

First European Workshop on End-to-End QoS in the Internet

2005-06-21

2

wireless world initiative

Ambient Scenario

	Mobile Internet	Ambient Scenario
QoS	Homogeneous models	Heterogeneous models
Control Plane	End-to-end: No operator control	Net-to-Net: Interaction between operators' QoS control entities
Mobility	Moving terminals	Moving terminals and moving networks
Routing	Not aware of QoS	Aware of QoS
Competition	Competition with well-known neighbours.	Competition with spontaneous agreements.

First European Workshop on End-to-End QoS in the Internet

2005-06-21

3

wireless world initiative

Problem Statement

Technology Support

- Intra-network QoS models to differentiate traffic
- Intra-network QoS models to assure QoS levels

Technology Limitation

- Unsuitable sheltering of intra-network heterogeneity
- Lack of inter-network QoS control
- Lack of support for mobile and multihomed networks

Dynamic Control of Inter-Network QoS

First European Workshop on End-to-End QoS in the Internet

2005-06-21

4

Dynamic Control of Inter-Network QoS

Novelty

- Clear separation of intra- and inter-network operations
- Supports interworking among moving and multihomed networks

Expected Benefits

- Clients are able to receive QoS offers from multiple providers
- Accommodates the increasing inter-network competitiveness
- QoS agreements/specification described in a common form
- Allows call blocking and fast call setup
- Provides bandwidth guarantees
- Maintains quality during the life-time of communication session.

Proactive Control of Bi-lateral QoS Agreements

First European Workshop on End-to-End QoS in the Internet

2005-06-21

wirel

Related Approaches

Path-coupled QoS signalling

- Easy bypass of signalling unaware networks
- Automatic adaptation to route changes
- Limited flexibility to integrate different QoS models
- Normally end-to-end reactive signalling
- E.g.: QoS-NSLP and RSVP

Path-decoupled QoS signalling

- Independent signalling and forwarding planes
- Supports non-traditional routing
- Problematic next-hop discovery to forward queries
- Normally end-to-end reactive signalling
- E.g.: SIBBS (Internet2) for resource allocation of static well-known SLSs

Do Not Satisfy all Requirements for

Dynamic Control of Inter-Network QoS

First European Workshop on End-to-End QoS in the Internet

2005-06-21

wirele: wor

INQA

Dynamic Control of Inter-Network QoS Agreements

- INQA provides a pro-active solution to control bi-lateral QoS agreements with:
 - Controller: Ambient Network QoS Entity (AQE)
 - Mechanisms: SLS advertisement , negotiation, monitoring and aggregation
 - Protocol: Inter-network signalling to support advertisement, negotiation and monitoring of SLSs
- INQA signalling protocol (INQA-P)
 - Path-decoupled between adjacent AQEs: bi-lateral QoS signalling (not end-to-end)
 - Traffic-related signalling (SLSs)
 - Per-flow SLSs and Per-Class SLSs
 - Negotiation of SLSs based on offers from different providers
 - > Definitely suitable for qualitative services. More analysis for quantitative services

First European Workshop on End-to-End QoS in the Internet

2005-06-21

7

Functionality Example INQA-P for End-to-end Services

Aplicability Example (1/2) **Moving Networks Scenario**

Aplicability Example (2/2) Multi-homed Networks Scenario

- Users: Extended portfolio of available services
- Augmentation: robustness and load-balancing
- Independent from the inter-network routing protocol

First European Workshop on End-to-End QoS in the Internet

2005-06-21

10

wireless world initiative

INQA Evaluation

* Scalability

- Handle high frequency of advertisements and negotiations \succ
- Handle straight guarantees based on per-flow SLSs
- Handle mobility \geq

- - Possible extra complexity to handle end-to-end services.
 - Communication overhead to maintain suitable bi-lateral QoS agreements

First European Workshop on End-to-End QoS in the Internet

2005-06-21

11

wirele

Steps for INQA Development and Validation

SLS Definition:

- Definition of an universal SLS template. (Done)
- Definition of policies to create SLSs from the template. (Done)
- Guidelines for mapping techniques to different QoS models. (Done)

INQA:

- Definition of INQA-P and AQE mechanisms. (Done)
- Specification of INQA-P and AQE mechanisms (On-going)
- Set-up of a test-bed (On-going)

Analysis:

- Scalability analysis (To be Done)
- Integration of AQEs of neighbour networks. (Future Work)
- Combination of INQA-P with end-to-end signalling for services with quantitative guarantees (e.g. QoS-NSLP). (Future Work)

First European Workshop on End-to-End QoS in the Internet

2005-06-21

12