

Inter-Provider QoS Peering for IP Service Offering, Scalability, and Bi-directionality of Services

Hamid Asgari

Thales Research & Technology (TRT) UK Limited

Hamid.Asgari@thalesgroup.com

EEQoS Workshop, Paris 21-22/06/05

- Abstract View of Functional Architecture
- Inter-domain QoS Peering Models (Source-based, Cascaded, & Bilateral)
- Scalability of QoS Peering Models
- Bi-directionality support in QoS Peering Models
- Target Services
- Conclusion

QoS offering across multiple domains necessitates co-operation among IP Network Providers (INP)

- INP interactions occur at both service layer and network layer.

QoS Classes and their operations

- A QoS-class (QC) denotes a basic network-wide QoS transfer capability of one/more domains.
- A QoS transfer capability is a set of attribute-value pairs expressing packet transfer performance parameters such as OWD, OPL & IPDV.
- *I-QC:* QoS transfer capability provided by means employed in the provider domain itself.
- **e-QC**: multi-network-wide QoS transfer capability provided by means employed in the provider domain and other peering domains.
- *m-QC*: an abstract concept which relies on global understanding of QoS requirements of well-known applications supporting a qualitative range of values of the QoS-class performance parameters.

- An INP negotiates pSLSs directly with a number of providers.
- Source INP requires topology of Internet for finding domains to negotiate with.

- Domains' capabilities are discovered via different means.
- An INP negotiates pSLSs with its adjacent providers to implement e-QCs.
- pSLSs are set-up between adjacent providers, but not between providers more than "one AS hop away".
- pSLSs are set-up with defined scope and distinct performance characteristics.

- pSLSs are set-up between adjacent domains with open scope. pSLSs are not tied to certain destinations.
- pSLSs are set-up with no distinct performance characteristics but simple compliance with well-known QCs defined globally.
- An INP advertise m-QCs it supports for other INPs to make use of offered m-QCs.
- Each domain finds reachability information in an m-QC plane via qBGP updates.

- Definition
- Ability for the system to function effectively and keep its performance in desired levels, as the size of parameters influencing its behavior increase.
- Expected results
- A "no more than linear" dependency to the arrival rate of requests/messages indicates the system is prone to scale.
- Parameters to consider
- Number of pSLS to be managed per INP for offering inter-domain services
- Message flow during the pSLS negotiation
 - The extent of messages passing/processing involved in a new pSLS set-up.
- Number and granularity of classes of service (QCs) offered
- Number of customer requests (cSLS) can be managed per INP
- Number of routing announcements, size of routing tables, etc.

- Source INP requires topology of Internet for finding domains to negotiate with.
- Source INP needs to know 1-QCs offered in each domain for binding them to form e-QCs.
- pSLS agreements are tailored to the source INP requirements.
- It is possible to set-up optimal routes to destinations.
- Source-based model is feasible for a small number of domains.
- The source INP as the central point may end up with many *pSLSs* to manage.

 N_{lqc} = Nr. of well-known l-QCs (N_{lqc}) used across all domains (constant).

 N_s = Nr. of *pSLSs* required from source to reach an AS for an e-QC.

i = Nr. of transit hops (ASs) plus the egress hop for constructing an e-QC from S to D path

 N_d = Nr. of AS domains in the Internet. N_p = Nr. of *pSLSs* from a central point to reach all ASs for all e-QCs. N_{pt} = Nr. of total *pSLSs* required to offer QoS-based services across Internet.

$$N_{s} = i, \qquad N_{pt} = N_{d} * N_{p}$$

Worst case : $N_{p} = N_{lqc} * \sum_{j=1}^{N_{d}^{-1}} (N_{d} - j) = N_{lqc} * \left[\frac{N_{d} * (N_{d}^{-1})}{2}\right], \text{Best case : } N_{p} = N_{lqc} * (N_{d}^{-1})$

Worst case: INP is the furthest away from destination. Best case: INP is located close to the centre of net.

Thus Nr. of *pSLSs* may need to be established by the source INP is $O(N_d^{-2})$.

Making the scalability of source-based model a cause for concern

EEQoS Workshop, Paris 21-22/06/05

THALES

- No need for complete topology related information except routing information.
- Each INP may only have a limited number of *pSLSs* to manage:

 $N_{eqc} = Nr.$ of e-QCs offered to each destination (constant). $N_s = Nr.$ of *pSLSs* required between two adjacent domains to reach an AS for an e-QC. $N_{req} = Nr.$ of *pSLSs* required to reach from a S to D for a single e-QC. $N_p = Nr.$ of *pSLSs* from an AS to reach all destination ASs for all e-QCs. $N_{pt} = Nr.$ of total *pSLSs* required to offer QoS-based services across Internet. $N_s = 1 \& N_{req} = i$ $N_p = N_{eqc} * (N_d - 1), N_{pt} = N_p * N_d$

Thus, Nr. of of *pSLSs* needs to be established by an INP is $O(N_d)$.

Making the cascaded model more scalable than source-based model.

- In bilateral model, only a very limited number of well-known m-QCs are globally used.
- While in cascaded model, the QC binding is done arbitrary increasing the number of offered QCs, increasing the number of pSLSs to set-up.

EEQoS Workshop, Paris 21-22/06/05

1 cSLSa is between Customer A & AS1 for the scope of (A@AS1 to C@AS5). How does any Destination AS (e.g., AS5 in forward direction) figure out the scope for the reverse direction (sink for return traffic, i.e., A@AS1)?

11

THALES

Bi-directionality in Cascaded Model (2)

Can there be a reverse path e-QC for every forward path e-QC?

EEQoS Workshop, Paris 21-22/06/05

THALES

Implementing Multiple Cascades for Reverse Directions

Multiple cascade are built in reverse direction in order to cover the sources and destinations serve by the single cascade in forward direction to allow transporting return traffic.

• The way these multiple cascades are built serve more downstream customers in reverse direction.

Bi-directionality in Bilateral Model

- The pSLSs between all involved ASs are put in place in both directions irrespective of the paths traffic may take in either directions.
- The scope for these pSLSs are within the domain (m-QCs).
- Path for forward & return traffic may be different depending on q-BGP updates.

In this approach, q-BGP can provide:

- QoS service capabilities
- QoS Class (QC) identifier to distinguish various m-QC planes
- **QoS performance characteristics**

Target Services

Residential and corporate customers differ both at the level of the performance and traffic guarantees and geographical scope of the services they require.

- Residential customers need to reach any available destination at any time with better-than-best-effort service levels.
- Corporate customers need strong QoS guarantees and constant bandwidth for supporting particular services such as IP VPNs in order to reach a limited set of destinations.
- The 'CM' can be used for services that require QoS performance guarantees for reaching specific destinations allowing E2E bandwidth guarantee within statistical bounds.
- The 'BM' can used to offer better Internet connectivity services with some QoS levels, but no strong guarantees. It enables a provider to offer differentiated services, where each service is related to an *m*-QC.
 - It is envisaged that providers throughout the Internet will implement a small number of well-known *m-QC*s.
 - In effect, a set of parallel "internets" can be deployed, each offering service levels associated with a specific *m-QC*.

Conclusion

- QoS offering across multiple domains requires co-operation among INPs.
- Source-based QoS peering does not scale.
- CM is a more scalable but requires fine tuning.
- BM follows the loosely coupled structure of Internet and easier to deploy.
- Providing bi-directionality in 'BM' causes far less complication.
- BM provides the means for deploying a set of parallel "internets" offering qualitative differentiated services.
- We have also evaluated in a testbed how pSLSs can be established and how q-BGP can be implemented across multiple domains to support QoS delivery using BM.

