



## **EuQoS Classes of Service**

Wojciech Burakowski<sup>1</sup>, Marek Dąbrowski<sup>1</sup>, Martin Potts<sup>2</sup>

<sup>1</sup>Warsaw University of Technology, Poland

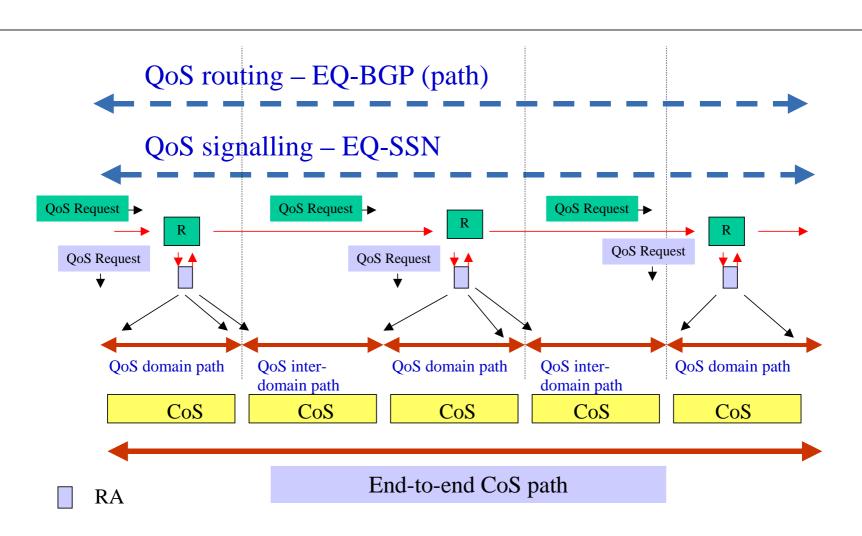
<sup>2</sup>Martel, Switzerland

1st European Workshop on end-to-end QoS in the Internet, Paris, 2005

### Contents



- QoS Requirements for EuQoS system
- EuQoS application requirements
- Class of Service (CoS) concept
- CoS concept in EuQoS System
- Proposal for EuQoS CoSs
  - end\_to\_end (basic) CoSs in EuQoS
  - aggregated CoSs in EuQoS
- Conclusions and further steps

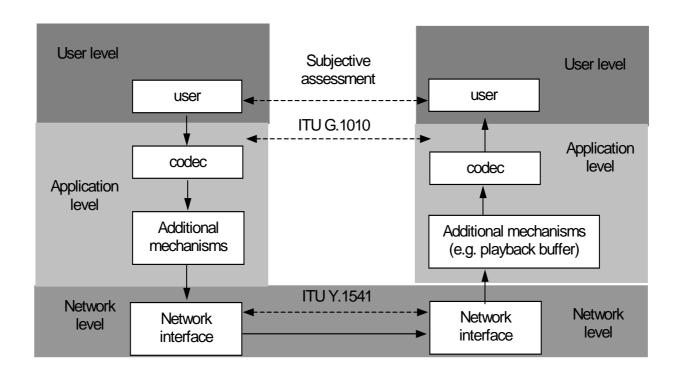

## **EuQoS System requirements**



- Designed for assuring end\_to\_end\_ QoS at the packet layer
- Strict QoS guarantees should be provided
- EuQoS environment: heterogenous and multiple-domain networks
  - many types of access networks xDSL, UMTS, WiFi, LAN/Ethernet
  - IP core
- Different applications requiring different QoS guarantees (VoIP, VTC, VoD, Medigraf)

## EuQoS system






QoS request is submitted to given CoS

Slide 4

### EuQoS application requirements (1)





### QoS at the user level results from:

- QoS provided at the application level
- QoS provided at the network level

21.06.2005 WUT

## EuQoS application requirements (2)

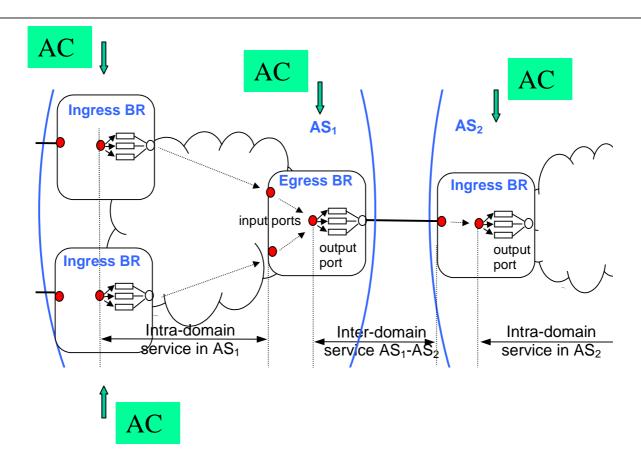


|                                                             |                  | VoIP                                                 | VTC<br>(voice)                                       | VTC<br>(video)                                                          | VoD               | MEDI-<br>GRAF<br>(voice)                             | MEDI-<br>GRAF<br>(video)                             | MEDI-<br>GRAF<br>(data trans-<br>fer)                                 | MEDI-<br>GRAF<br>(chat)                                   |
|-------------------------------------------------------------|------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|-------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|
| Throughput                                                  |                  | 8-64<br>kb/s                                         | 6-128<br>kb/s                                        | 64-2000<br>kb/s                                                         | 400-17000<br>kb/s | 64 kb/s                                              | 384-1534<br>kbps                                     | Depends on<br>file size and<br>acceptable<br>transfer<br>time         | N/A                                                       |
| End-to-end<br>require-<br>ments<br>(applica-<br>tion level) | Delay            | <150 ms<br>(local)<br><400 ms<br>(long-<br>distance) | <150 ms<br>(local)<br><400 ms<br>(long-<br>distance) | <150 ms<br>(local)<br><400 ms<br>(long-<br>distance)                    | < 10s             | <150 ms<br>(local)<br><400 ms<br>(long-<br>distance) | <150 ms<br>(local)<br><400 ms<br>(long-)             | File transfer<br>time < 15s<br>(preferred),<br><60s (ac-<br>ceptable) | Message transfer time < 2s (preferred), < 4s (acceptable) |
|                                                             | Jitter           | <1 ms                                                | < 1ms                                                | Negligible                                                              | Negligible        | < 1ms                                                | Negligible                                           | N/A                                                                   | N/A                                                       |
|                                                             | Loss             | <3%                                                  | < 3%                                                 | <1%                                                                     | <1%               | < 3%                                                 | <1%                                                  | 0                                                                     | 0                                                         |
| Additiona<br>quireme                                        |                  |                                                      | Lip-<br>synch <<br>80ms                              | Lip-synch < 80ms                                                        |                   | Lip-synch < 80ms                                     | Lip-synch < 80ms                                     |                                                                       |                                                           |
| End-to-end<br>require-<br>ments<br>(network                 | IPTD             | <100 ms<br>(local)<br><350 ms<br>(long-<br>distance) | <100 ms<br>(local)<br><350 ms<br>(long-<br>distance) | <100 ms<br>(local)<br><350 ms<br>(long-<br>distance)                    | Not critical      | <100 ms<br>(local)<br><350 ms<br>(long-<br>distance) | <100 ms<br>(local)<br><350 ms<br>(long-<br>distance) | N/A                                                                   | N/A                                                       |
| level)                                                      | IPDV             | <50 ms                                               | <50 ms                                               | <50 ms                                                                  | Not critical      | <50 ms                                               | <50 ms                                               | N/A                                                                   | N/A                                                       |
| Additiona                                                   | il PLR<br>al re- | <10 <sup>-3</sup>                                    | <10 <sup>-3</sup> Lip- synch <                       | <10 <sup>-3</sup><br>Lip-synch                                          | <10 <sup>-3</sup> | <10 <sup>-3</sup><br>Lip-synch                       | <10 <sup>-3</sup><br>Lip-synch <                     | N/A<br>Guaranteed                                                     | N/A                                                       |
| quireme                                                     | ents             |                                                      | synch < ?                                            | </td <td></td> <td>&lt; ?</td> <td>?</td> <td>throughput</td> <td></td> |                   | < ?                                                  | ?                                                    | throughput                                                            |                                                           |

Different QoS requirements with respect to:

- throughput
- delay
- delay variation
- loss ratio

# Class of service concept for EuQoS (1)




A "service class" represents a set of traffic that requires specific delay, loss and jitter characteristics from the network for which a consistent and defined per hop-behaviour applies

A service class pertains to applications with similar characteristics and performance requirements

## **Borders for Classes of service**





Intra- and inter-domain Classes of service

AC: admission control

## Definition of a service class



- 1. QoS objectives: values of packet losses, delays...
- 2. Types of connections: p2p
- 3 Traffic descriptors: single-, double token bucket, more advanced
  - A. Provisioning of resources: static, dynamic
  - B. CAC: based on declarations, based on measurements
  - C. Tuning mechanisms at the packet level (PHB: classifiers, scheduling, marking, active quieueing..)

### Classes of service concept for EuQoS



- To follow standardization activities
  - IETF proposal
  - ITU proposal
- To take into account the experiences from implementation in some networks
  - GEANT
  - AQUILA
- To take into account the capabilities of particular technologies

## CoSs: IETF proposal (1)



| Inter-                             | To               | lerance  | То     |     |                             | То   | lerance | То     |              |               |
|------------------------------------|------------------|----------|--------|-----|-----------------------------|------|---------|--------|--------------|---------------|
| Provider Service Class (Aggregate) | Loss             | Delay    | Jitter | РНВ | End-To-End<br>Service Class | Loss | Delay   | Jitter | DSCP<br>Name | DSCP<br>Value |
| Ctrl                               | Low              | Low      | Yes    | CS  | Network<br>Control          | Low  | Low     | Yes    | CS7          | 111000        |
|                                    |                  |          |        |     | Telephony                   | VLow | Vlow    | VLow   | EF           | 101110        |
|                                    | Real Time VLow V | Low VLow |        |     | Signalling                  | Low  | Low     | Yes    | CS5          | 101000        |
| D 1 TT'                            |                  |          | VLow   | EF  | MM<br>Conferencing          | L-M  | Vlow    | Low    | AF4x         | 100xx0*       |
| Real Time                          |                  |          | VLOW   |     | RT<br>Interactive           | Low  | Vlow    | Low    | CS4          | 100000        |
|                                    |                  |          |        |     | Broadcast<br>Video          | VLow | Med     | Low    | CS3          | 011000        |
|                                    |                  |          |        |     | MM<br>Streaming             | L-M  | Med     | Yes    | AF3x         | 011xx0*       |
| None Real<br>Time                  | Low              | LIM      | Yes    | AF  | Low Latency<br>Data         | Low  | L-M     | Yes    | AF2x         | 010xx0*       |
| 1 11116                            |                  |          |        |     | OAM                         | Low  | Med     | Yes    | CS2          | 010000        |
|                                    |                  |          |        |     | High ThruPut<br>Data        | Low  | М-Н     | Yes    | AF1x         | 001xx0*       |
| Best Effort                        | NS               | NS       | NS     | DF  | Standard                    | NS   | NS      | NS     | DF           | 000000        |

11 Basic CoSs and 4 aggregated CoSs

21.06.2005 WUT

# CoSs: IETF proposal (2), exemplary applications



| Aggregated types of CoSs | Types of CoSs        | Examples of applications                      |  |  |  |
|--------------------------|----------------------|-----------------------------------------------|--|--|--|
| CTRL                     | Network control      | Network routing                               |  |  |  |
|                          | Telephony            | IP telephony bearer                           |  |  |  |
|                          | Signalling           | IP telephony signaling                        |  |  |  |
|                          | MM conferencing      | H.323/V2 videoconferencing (elastic)          |  |  |  |
| Real Time                | RT interactive       | Video conferencing and interactive gaming     |  |  |  |
|                          | Broadcast video      | Broadcast TV and live events                  |  |  |  |
|                          | MM streaming         | Streaming video and audio on demand           |  |  |  |
| Non-Real Time            | Low-latency data     | Client/Server transactions Web-based ordering |  |  |  |
| Non-Real Time            | OAM                  | Non-critical OAM&P                            |  |  |  |
|                          | High throughput data | Store and forward applications                |  |  |  |
| Best Effort              | Standard             | Undifferentiated applications                 |  |  |  |

## CoSs: ITU proposal (1)



| ]                                             | TU Classes of Service                                                                    |                                        |                                        |                                        |                                        |                                          |                  |                                                   |                                                   |
|-----------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|------------------|---------------------------------------------------|---------------------------------------------------|
| Network<br>perfor-<br>mance<br>parame-<br>ter | Nature of network performance objective                                                  | Class<br>0                             | Class<br>1                             | Class<br>2                             | Class<br>3                             | Class<br>4                               | Class<br>5       | Class<br>6                                        | Class<br>7                                        |
| IPTD<br>Delay                                 | Upper bound on the mean IPTD (Note 1)                                                    | 100ms<br>(Note<br>3)                   | 400ms                                  | 100ms<br>(Note<br>3)                   | 400ms                                  | 1s                                       | U<br>(Note<br>4) | 100ms<br>(Note<br>3)                              | 400ms                                             |
| IPDV<br>Jitter                                | Upper bound on the 1 - 10 <sup>-3</sup> quantile of IPTD minus the minimum IPTD (Note 5) | 50ms<br>(Note<br>6)                    | 50ms<br>(Note<br>6)                    | U                                      | U                                      | U                                        | U                | 50ms<br>(ffs if<br>this<br>should<br>be<br>lower) | 50ms<br>(ffs if<br>this<br>should<br>be<br>lower) |
| IPLR                                          | Upper bound on the packet loss probability                                               | 1 x<br>10 <sup>-3</sup><br>(Note<br>7) | 1 x<br>10 <sup>-3</sup><br>(Note<br>7) | 1 x<br>10 <sup>-3</sup>                | 1 x<br>10 <sup>-3</sup>                | 1 x<br>10 <sup>-3</sup>                  | U                | 1 x<br>10 <sup>-5</sup>                           | 1 x<br>10 <sup>-5</sup>                           |
| IPER                                          | Upper bound                                                                              | 1 x<br>10 <sup>-4</sup><br>(Note<br>8) | 1 x<br>10 <sup>-4</sup><br>(Note<br>8) | 1 x<br>10 <sup>-4</sup><br>(Note<br>8) | 1 x<br>10 <sup>-4</sup><br>(Note<br>8) | 1 x<br>10 <sup>-4</sup><br>(No-<br>te 8) | U                | 1 x<br>10 <sup>-6</sup><br>(Note<br>8)            | 1 x<br>10 <sup>-6</sup><br>(Note<br>8)            |
| IPRR                                          | Upper bound                                                                              |                                        | ·                                      |                                        |                                        | Ź                                        |                  | 1 x<br>10 <sup>-6</sup><br>(Note<br>9)            | 1 x<br>10 <sup>-6</sup><br>(Note<br>9)            |

8 CoSs

# CoSs: ITU proposal, exemplary **EU**:05 applications (2)



| ITU Classes of Service  | Class 0                                                      | Class 1                                                      | Class 2                                                    | Class 3          | Class 4                                                                               | Class 5                                                  | Class<br>6 | Class<br>7 |
|-------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|------------|------------|
| Applications (examples) | Real- time, jitter sensitive, high interac- tion (VoIP, VTC) | Real- time, jitter sensitive, high interac- tion (VoIP, VTC) | Transaction<br>data, highly<br>interactive<br>(signalling) | Transaction data | Low loss<br>only<br>(short<br>transac-<br>tions, bulk<br>data,<br>video<br>streaming) | Traditional<br>applications<br>of default IP<br>networks |            |            |

# CoSs: mapping between IETF and ITU proposal



| Aggregated types of CoSs (IETF) | Types of CoSs (IETF) | Types of CoSs (ITU) |  |  |
|---------------------------------|----------------------|---------------------|--|--|
| CTRL                            | Network control      | Class 0             |  |  |
|                                 | Telephony            | Class 0 or Class 1  |  |  |
|                                 | Signalling           | Class 2             |  |  |
|                                 | MM conferencing      | Class 0 or Class 1  |  |  |
| Real Time                       | RT interactive       | Class 0 or Class 1  |  |  |
|                                 | Broadcast video      | Class 0             |  |  |
|                                 | MM streaming         | Class 4             |  |  |
| Non-Real Time                   | Low-latency data     | Class 3             |  |  |
| Non-Real Time                   | OAM                  | Class 3             |  |  |
|                                 | High throughput data | Class 4             |  |  |
| Best Effort                     | Standard             | Class 5             |  |  |

Slide 15

Remark: no 1:1 mapping but not contrary proposals

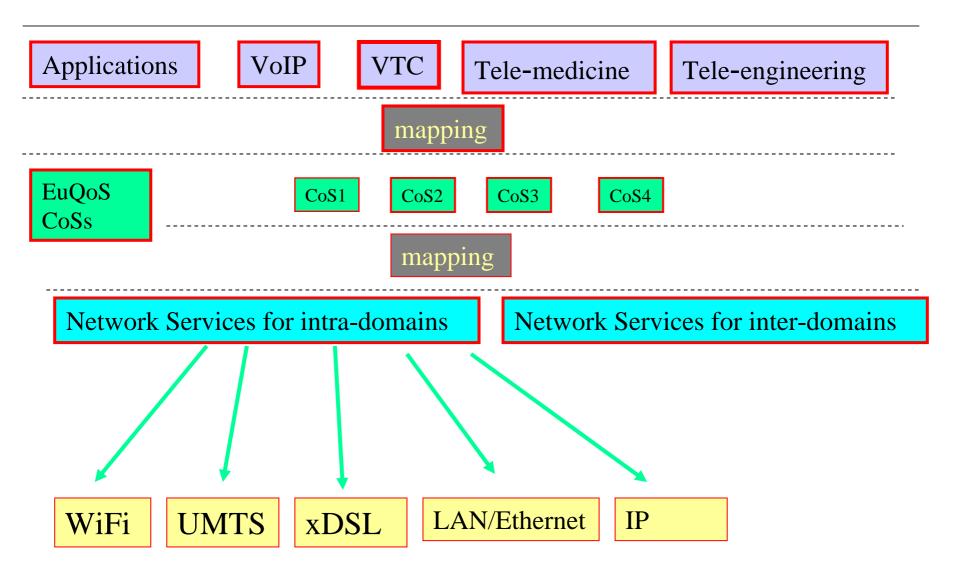
# QoS in core networks – IP prototype solutions: AQUILA



| Network service              | Traffic<br>type      | Characteristic examples                 | Application example    |
|------------------------------|----------------------|-----------------------------------------|------------------------|
| Premium CBR                  | Constant             | Small packets<br>low loss, low dela     | SIP VoIP               |
| Premium VBR                  | Variable             | Large packets<br>low loss, low<br>delay | SIP Video              |
| • Premium MM                 | Adaptive             | required<br>throughput                  | File transfer<br>(FTP) |
| <ul><li>Premium MC</li></ul> | Very short<br>bursts | very low<br>delay & loss                | online games           |
| Standard                     | Best effort          | classical                               | the rest               |

Goal: only a <u>few</u> network services to allow clear service differentiation

# CoSs in Geant and NRNs (IP core)




- IP Premium service
- Best effor service
- Less than best effort

© EuQoS consortium Slide 17

## Classes of service in EuQoS (general scheme)





## EuQoS applications and **Classes of Service**



| Types of Classes of | End-To-End<br>Service Class | Qo               | S Objecti    | ves   | EuQoS Applications (Phase 1) |     |     |     |                |                  |      |
|---------------------|-----------------------------|------------------|--------------|-------|------------------------------|-----|-----|-----|----------------|------------------|------|
| Service             |                             |                  | Maan         |       | VoIP                         | VTC | VoD |     | Med            | ligraf           |      |
|                     |                             | IPLR             | Mean<br>IPTD | IPDV  |                              |     |     | VTC | Collabor ation | data<br>transfer | chat |
| CTRL                | Network<br>Control          | 10 <sup>-3</sup> | 100 ms       | 50 ms |                              |     |     |     |                |                  |      |
| RT                  | Telephony                   | $10^{-3}$        | 100 ms       | 50 ms | X                            |     |     |     |                |                  |      |
|                     | Signalling                  | $10^{-3}$        | 100 ms       | U     |                              |     |     |     |                |                  |      |
|                     | MM<br>Conferencing          | 10 <sup>-3</sup> | 100 ms       | 50 ms |                              |     |     |     |                |                  |      |
|                     | RT<br>Interactive           | 10 <sup>-3</sup> | 100 ms       | 50 ms |                              | X   |     | X   |                |                  |      |
|                     | Broadcast<br>Video          | 10 <sup>-3</sup> | 100 ms       | 50 ms |                              |     |     |     |                |                  |      |
| NRT                 | MM<br>Streaming             | 10 <sup>-3</sup> | 1 s          | U     |                              |     | X   |     |                |                  |      |
|                     | Low Latency<br>Data         | 10 <sup>-3</sup> | 400 ms       | U     |                              |     |     |     |                |                  |      |
|                     | OAM                         | $10^{-3}$        | 400 ms       | U     |                              |     |     |     |                |                  |      |
|                     | High<br>ThruPut<br>Data     | 10 <sup>-3</sup> | 1 s          | U     |                              |     |     |     |                | X                |      |
| Best Effort         | Standard                    | U                | U            | U     |                              |     |     |     |                |                  | X    |

## Proposed set of Classes of Service



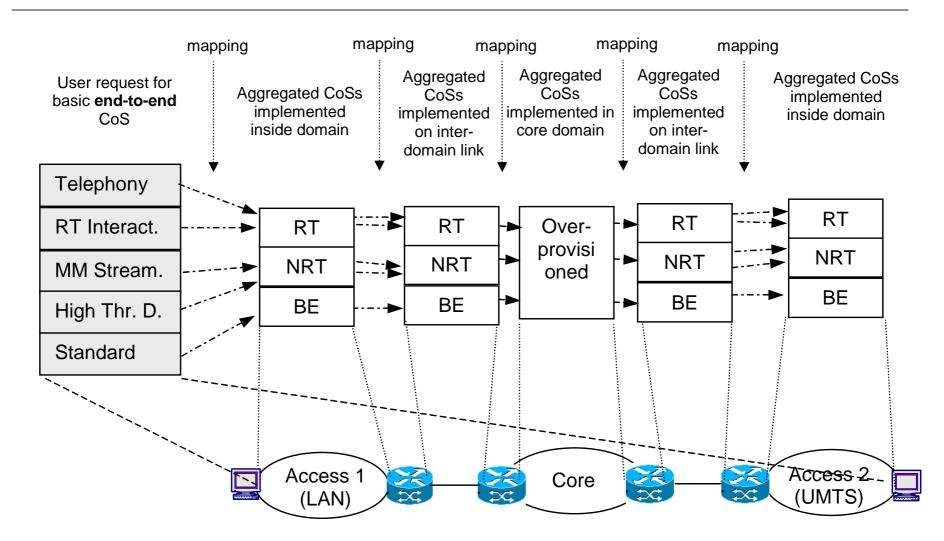
| Aggregated                        | Basic End-              | Qo               | S Objecti    | ves   |
|-----------------------------------|-------------------------|------------------|--------------|-------|
| Types of<br>Classes of<br>Service | To-End<br>Service Class | IPLR             | Mean<br>IPTD | IPDV  |
| RT                                | Telephony               | $10^{-3}$        | 100 ms       | 50 ms |
|                                   | RT<br>Interactive       | 10 <sup>-3</sup> | 100 ms       | 50 ms |
| NRT                               | MM<br>Streaming         | 10 <sup>-3</sup> | 1 s          | U     |
|                                   | High<br>ThruPut<br>Data | 10 <sup>-3</sup> | 1 s          | U     |
| Best Effort                       | Standard                | U                | U            | U     |

Basic CoSc – visible by the users and can be deployed in some access networks (e.g. In LAN/Ethrenet)

Aggregated CoSs – can be deployed in some parts of the networks (e.g. Inter-domain links, IP core)

# 

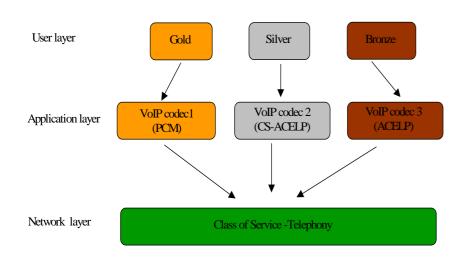



|                            |           | QoS Objetive | S     |                     |                    |  |
|----------------------------|-----------|--------------|-------|---------------------|--------------------|--|
| End-to-end Class of Servce | IPLR Mean |              | IPDV  | Type of connections | Trafficdescriptors |  |
|                            | IFLK      | IPTD         | IFDV  |                     |                    |  |
| Telephony                  | $10^{-3}$ | 100 ms       | 50 ms | p2p                 | Peak rate          |  |
| RT Interactive             | $10^{-3}$ | 100 ms       | 50 ms | p2p                 | Peak rate          |  |
| MM Streaming               | $10^{-3}$ | 1 s          | U     | p2p                 | Requsted rate      |  |
| High Thruput Data          | $10^{-3}$ | 1 s          | U     | p2p                 | Requsted rate      |  |
| Standard                   | U         | U            | U     |                     |                    |  |

As simple as possible traffic descriptors – peak rates, requested rates

© EuQoS consortium Slide 21

# An example for developping CoSs in EuQoS






#### Example: One Telephony Class - 3 QoS levels

### (Gold, Silver and Bronze)





| Standard | Codec<br>Type | Rate<br>[kbps] | Frame [ms] | Lookahead<br>[ms] | MOS <sub>intr</sub> |
|----------|---------------|----------------|------------|-------------------|---------------------|
| G.711    | PCM           | 64             |            | 0                 | 4.43                |
| G.729    | CS-ACELP      | 8              | 10         | 5                 | 4.18                |
| G.723.1  | ACELP         | 5.3            | 30         | 7.5               | 3.83                |
| G.723.1  | MP-MLQ        | 6.3            | 30         | 7.5               | 4.00                |

Mapping between Gold, Silver and Bronze may corresponds to:

- •different codecs
- •different CoSs

21.06.2005 WUT

2004-10-05 © EuQoS consortium Slide 23

## CoSs in particular networks



| Application        | Basic<br>CoSs   | Aggregated<br>CoSc | Ethernet<br>LAN  | UMTS                         | WLAN<br>(802.11) | xDSL                            | GEANT/NRNs |
|--------------------|-----------------|--------------------|------------------|------------------------------|------------------|---------------------------------|------------|
| VolP               | telephony       | RT service         | Voice<br>Service | Conversational traffic class | RT<br>service    | Constant<br>Bit Rate<br>Service | Premium IP |
| VTC                | RT interactive  | RT service         | Video<br>Service | Streaming traffic class      | RT<br>service    | Constant<br>Bit Rate<br>Service | Premium IP |
| Video<br>streaming | MM<br>streaming | N-RT<br>service    | Video<br>Service | Streaming<br>traffic class   | NRT<br>service   | Constant<br>Bit Rate<br>Service | Premium IP |

Pending work

004-10-05 © EuQoS consortium Slide 24

## Summary and next steps



- The next step is to specify in which way we implement each of required CoSc in particular networks (UMTS, xDSL, WiFi, LAN/Ethernte, IP core) and in the inter-domain links.
- Anyway, for each CoS we need specification of the QoS mechanism (schedulers, admission control rules) to meet the assumed QoS objectives
- Furthermore, for making adequate resource provisioning for particular part of networks we need to specify a scheme for QoS responsibilities for particular parts of end-to-end path