

Flow-Aware Networking: an alternative to QoS

Jim Roberts, France Telecom, Division R&D http://perso.rd.francetelecom.fr/roberts/

From traffic descriptor to SLS?

principle of QoS architectures
 based on a traffic descriptor,

satisfy the terms of an SLS

Service Class	Service Characteristics	CoS ID	Bandwidth Profile per EVC per CoS ID	Service Performance
Premiu m	Real-time IP telephony or IP video applications	6, 7	CIR > 0 EIR = 0	Delay < 5n Jitter < 1r Loss < 0.001%
Silver	Bursty mission critical data applications requiring low loss and delay (e.g., Storage)	4, 5	CIR > 0 EIR ≤ UNI Speed	Delay < 5n Jitter = N/ Loss < 0.01%
Bronze	Bursty data applications requiring bandwidth assurances	3, 4	CIR > 0 EIR ≤ UNI Speed	Delay < 15ms Jitter = N/ Loss < 0.1
Standa rd	Best effort service	0, 1, 2	CIR=0 EIR=UNI speed	Delay < 30ms Jitter = N/ Loss < 0.5

Figure 6: MEF trTCM algorithm

Ŀ.

From traffic descriptor to SLS?

Traffic and performance

Traffic and performance

🕑 e.g., an M/M/1 queue

> E [delay] = $\tau \rho / (1 - \rho)$, τ = packet time, ρ = link load

- very little scope for service differentiation
 - quality of service is good or bad
- a need for overload control
 - > e.g., admission control

Characterizing Internet traffic

- traffic is composed of flows

 same identifier, minimum packet spacing
 flows are "streaming" or "elastic"
 streaming SLS = "conserve the signal"
 elastic SLS = "transfer as fast as possible"

 the essential characteristic: the flow peak rate

 streaming peak rate = coding rate
 - elastic peak rate = exogenous rate limit (access line,...)

Ľ

Bufferless multiplexing for streaming flows

- **b** transparency \Leftrightarrow Pr [input rate > output rate] < ε
 - efficient when peak rate << link rate</p>
- 🕑 performance
 - excellent at normal load
 - need admission control in overload
- low-awareness
 - necessary for admission control

Fair sharing for elastic flows

- 🕑 peak rate ~ link rate
 - > a "processor sharing" queue
- peak rate << link rate</p>
 - bufferless multiplexing, like streaming traffic
- performance
 - > excellent at normal load (ρ < 90%)
 - > need admission control in overload (ρ > 100%)
 - flow-awareness
 - necessary for admission control

Flow-aware networking with two classes of service

- priority to streaming flows
- fair sharing for elastic flows (end-to-end, by TCP)
- flow-awareness
 - necessary for admission control
- but there are disadvantages
 - > marking, policing, fairness

Flow-aware networking without classes of service

apply per-flow fair queueing in router queues
 awareness of "active" flows (a small number!)
 per-flow admission control in case of overload

> awareness of "in-progress" flows (a large number)

Per-flow fair queueing

max-min fair sharing by fair sharing

 e.g., deficit round robin, self-clocked fair queueing,...
 max active flows ~ 500 (at load ≤ 90%), any link rate

 priority fair queueing"

 priority to packets of flows of rate < fair rate

 realizes implicit service differentiation

 when streaming flow rate < fair rate

Measurement-based admission control

admission control

- maintain fair rate > threshold₁, priority load < threshold₂
- even when offered load > 90%
- maintain a table of flows in progress
 - flow identifier and epoch of last packet
 - time out is no packet in T seconds (e.g., T = 2)
- implicit admission control
 - reject packets of new flows in congestion
 - > applications interpret as flow reject

fair rate	
priority Ioad	

~10000 flows in progress

flow _n	time _n
flow _m	time _m

FAN and the "Internet design philosophy"

respects the end-to-end principle

retains the current best effort user-network interface

retains survivability, reduces vulnerability

flow-awareness allows enhanced protection

admission control allows adaptive routing

performance assurance for both types of service

through implicit service differentiation

Still based on TCP

but fair queueing removes the need for "TCP friendliness"

enhanced cost-effectiveness, accountability

capex & opex reductions, simple billing

Conclusions

- from traffic descriptor to SLS?

 we need the traffic-performance-capacity relation
 from flow-aware characterization to flow-aware control
 streaming and elastic traffic
 bufferless multiplexing and fair sharing

 per-flow fair queueing and admission control

 scalable and feasible router mechanisms
 flow-aware networking, more than an alternative
 - QoS don't work!
 - FAN respects the "Internet design philosophy"