
Link Weight Optimisation with Quality of Service Support
Jonas Griem

University College London

Abstract: This paper presents a new method to perform QoS enabled traffic engineering
based mostly on conventional IP routing techniques. By combining the flexibility of layer
3 routing protocols like OSPF with a management plane link weight traffic engineering
technique, this paper makes the proposition that more recent technologies such as MPLS
are not essential to enable services that require QoS support.

1 Introduction
The success of multimedia applications on the Internet in the recent past clearly indicates that despite
the Internet’s principal design as a simple datagram service, performance sensitive applications run
quite well by adapting to the variations in network conditions. Yet the calls for quality of service are
justified, if the Internet is to replace, rather than complement any of the existing telephony and
television services. In order to do so, routing algorithms have to become QoS aware either by
reserving capacity on the network for each flow as proposed by (among others) the IntServ working
group [1] or by arranging the aggregate traffic flows inside the network in such a way that statistical
quality guarantees can be given for individual flows. The second option is potentially more scalable,
but it requires several components: the DiffServ per-hop-behaviour (PHB) at the queue level as well as
network management components that keep up to date information on traffic flows and available
capacity via monitoring as well as optimise the traffic flow by performing traffic engineering. This
paper outlines ideas and initial algorithms for an IP based traffic engineering mechanism.

2. Why IP Traffic Engineering
Shortest path routing algorithms such as used in the OSPF routing protocol have a significant
limitation for performing traffic engineering: the choice of the route is essentially that of the
algorithm, only indirect control over route selection is provided to the network operator via the link
weight settings. There is no method to redirect a particular stream of packets to onto a different path,
without potentially modifying the paths of many other streams of packets at the same time. The reason
for this shortcoming is related to the distributed and autonomous nature of routing, forcing simple
algorithms with low processing requirements and little information interchange. A lot of recent work
has therefore focused on solving the problem using non-IP forwarding techniques such as
Multiprotocol Label Switching (MPLS). With MPLS, label switched paths are explicitly installed for
each traffic trunk (that is traffic on the same route requiring the same treatment). Each label switched
router on the path needs to have a label translation table entry per such flow and routers without
corresponding entries (typically routers outside the path) cannot forward packets belonging to the
flow. Keeping explicit state information for each traffic trunk is a potential scalability problem of the
MPLS technique. A more important shortcoming is the lack of flexibility in the MPLS solution
compared to IP routing. Without routing software such as the shortest path algorithm in OSPF, MPLS
solutions cannot recover from link or node failures or badly configured label switched paths without
higher layer intervention (some work has been done in this area, e.g. [2]). The mechanisms provided
by MPLS are thus useful, especially for small-scale intermediate solutions. However, for large scale
Internet wide deployment, it would be preferable to keep the inherent advantages of routing and so
MPLS-only solutions should be avoided unless they are extended with a layer 3 routing algorithm. In
addition the scalability problems of MPLS have to be addressed.

The challenge to be met by an IP based traffic engineering system is twofold: meeting the traffic
engineering (and QoS) requirements for traffic injected into the network and doing so without
crippling the IP Interior Gateway Protocols (IP-IGPs) routing capabilities. In this paper, the
proposition is made that this goal can be achieved. The algorithms proposed, are based upon the link
weight optimisation techniques first described by [3]. The work shows that traffic engineering with
near MPLS performance without QoS constraints can be achieved by manipulating the OSPF link
weights using a heuristic search algorithm that balances the flows more efficiently. The link weight

2

6

3

5

1 4s d

2

6

3

5

1 4s d

2

6

3

5

1 4s d

1

2

1 1

2 2
1

3

1

3 1

2 1
3

1

2

4

1

1

3 3

2 2
2

1 4

1

Routing Plane 1

Routing Plane 2

Routing Plane 3

optimisation is carried out offline (i.e. outside the layer 3 routing algorithm execution time frame) as a
network management task and is based on real and estimated traffic matrices. The actual OSPF
algorithm routing remains unmodified; all traffic engineering information is contained in the link
weights. In addition to [3] the algorithms outlined in this paper have to meet the QoS constraints for
individual flows, also without modifying the routing algorithms in the IGP (OSPF). As a modification
to current IGP routing, this paper proposes to operate parallel routing planes for each DiffServ code
point (DSCP), i.e. a maximum of 64 individual routing planes in order to diversify the traffic
engineering choices. Figure 1 outlines the process in which a small network has three independent sets
of link weights (small numbers next to nodes). Three instances of OSFP calculate three different paths
from the source s to destination d using the different sets of weights.

3. Traffic Engineering in the Management Plane
While applications have changed dramatically during the short existence of the Internet, network layer
functionality has evolved very little. There are two reasons
for this: the maturity of the technology (it works) and the
inertia caused by the need to potentially update every router
of the Internet. A point was made in [3] that functionality that
is subject to frequent change, such as the link weight
optimisation algorithms and policies controlling the
algorithms, should not be located in the network layer
because of this inertia. By contrast, if the functionality was
located in the management plane it can be modified more
easily to represent changes in business objectives as well as
improvements in technology without the need for updates to
router operating software, which is often outside the
operators control. The approach outlined in this paper is a
combination of conventional distributed routing and
management based traffic engineering functionality. There
are some good arguments for splitting the functionality in
such a way. The most important advantage is that the
approach bares the opportunity for graceful migration that
causes little disruption to existing layer 3 operations. With
the exception of the introduction of routing planes, most
functionality is added at the management layer. Equally important is that the complexity introduced by
QoS awareness remains outside the network layer, leaving the distributed best-effort Internet
untouched. Moving the complexity caused by QoS awareness into the management plane also has the
advantage of avoiding the large increase in state information in the network.

4. A Link Weight Modification Algorithm
Distributing traffic demands on OSPF networks is a challenge, because of the “indirectness” of the
traffic engineering problem. Finding optimal paths for each traffic demand as for MPLS is only half of
the problem, the other half is the implementation of these paths with OSPF link weights. While MPLS
allows the explicit pinning of a route between any two nodes and effectively switches packets
according to this configuration, OSPF relies on individual routing decisions taken at each node. These
are based solely on destination IP address and the networks link weight metrics that determine the
shortest path towards the destination address. Mapping an “optimal” demand distribution as calculated
for an MPLS network onto an OSPF network is thus not an achievable goal in most practical cases.
Instead, the algorithms for finding good paths and for translating these paths into link weights have to
go hand in hand, iteratively searching for better link weights to spread the load across the network.
Figure 2 shows an activity diagram of a link weight traffic engineering algorithm [4].

4.1. Link Load
Before beginning the optimisation process, the network has to be initialised with a set of link weights.
Preferably at this stage the weights should be chosen to provide a reasonable initial condition to the

Figure 1 – “Routing Planes”

optimisation. Inverse link weights, such as recommended by Cisco [5] are a better starting point than
unit weights for instance, since inverse capacity weights reflect on the network topology. From the
activity diagram in figure 2, the next step is the calculation of shortest path trees from each
ingress/egress pair in the network that is expected to carry traffic. Using a matrix of predicted traffic
patterns, the link load on each link inside the network can now be calculated. Note that the steps
outlined have to be performed for each routing plane and in order to arrive at the total link load on
each link, the results of the load calculations have to be summed. Quality characteristics for traffic on
different routing planes are likely to be different and as a result, summation of the planes bandwidth
consumption is not a straight forward process. A concept called equivalent bandwidth is employed to
make the bandwidth comparable; however the details of this process and that of QoS parameter
translation into traffic engineering parameters are out of scope of this discussion for reasons of space.

4.2 Link Cost
Once the utilisation of each link is known, an
optimisation algorithm has to choose one (or
some) links to optimise during the current
iteration. This choice is made based on a cost
function, which summarises the objectives of
optimisation criteria. As in [6] the network is
modelled as a directed graph, G=(N,E) where the
nodes n∈N and links l∈E represent routers and
links between routers. A link l has capacity c(l)
indicating the amount of traffic that l can
accommodate. The traffic is given in form of a
demand matrix D, representing the amount of
traffic flowing on a path between any nodes (s,d).
This demand matrix is derived from projections
based on historic data and current traffic
demands. It can be expected that many of the
demands (s,d) are zero, as not every
ingress/egress pair has a non zero traffic flow. So
the traffic engineering problem is to distribute the
traffic from non zero D(s,d) across the network
evenly. The load on a link is given as xl, this is
the sum of all demands D(s,d) using the link l.
The utilisation of l is then given by xl/c(l). Link
loads from each routing plane and the physical capacity of each link are used to give the total free
capacity of each link. Each routing plane had different QoS characteristics, which has to be expressed
by associating an equivalent bandwidth to PHBs rather than the physical bandwidth. For each PHB h
of a set Hl of PHBs on a link with bandwidth allocation xl,h, the equivalent bandwidth can be expressed
as a function fl,h(xl,h) increasing in xl,h and greater for any given xl,h with higher priority h. The total
equivalent load of each link is then , ,()

l

l h l h
h H

f x
∈
∑ . Assuming that c(l) is not the same for all links,

, ,()

()
l

e l h l h
h H

L f x

c l
∈

= ∑

is the normalised utilisation of the link. In order to arrive at an overall cost function, the statement has
to be extended to reflect a cost per link, which can then be summed over l∈E.

, ,(())
()

()
l

l h l h
h H

l e l
l E l E

f x
L

c l
∈

∈ ∈

⎛ ⎞
⎜ ⎟Φ = Φ = Φ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑ ∑

initialise
link weights

run shortest
path algorithm

calculate total
projected
link load

identify
congested

link(s)

reduce cost
on congested

links

done

test
optimisation
result

can
optimise further

reached satisfactory
result or limit

Figure 2 – Activity diagram outlining the stages of a link weight
based traffic engineering algorithm.

test QoS
performance for
previous result

delete last
link weight
modification

result
no longer
obeys QoS
requirements

result OK
continue

4.3 Reducing the Load of Congested Links
In order to minimise the cost function, those links with the largest contribution to the total cost have to
be identified. Hence max ()c l el E

l L
∈

= Φ identifies such a link. Before modifying any weights, it is

necessary to choose a candidate traffic flow passing though lc which to modify. Depending on the type
of modification and the amount of load, a choice of flows to modify has to be made. Parameters of the
flows are bandwidth and routing plane membership. Since each routing plane has different QoS
parameters, it is possible that flows of least one plane have sufficient leeway on relevant QoS
parameters (available QoS parameter budget). Once a choice has been made, the flow is redirected:

Let R be the origin node of link lc, and let Rl be the destination node of lc. Let W(R) be the sum of the
weights on the shortest path from node R to some egress node RE. Also let Rn be a neighbouring node
to R of a set of neighbours Rn∈B. Let ωx,y be the link weight on link x for routing plane y. Then,

, (,),() () ()
nl l h n R R hW R W R W Rω ω= + ≤ + for all R B∈

The objective now is the reduction of the load on lc, by redistribution of its load onto other
neighbouring links. For a single weight modification, the neighbourhood of node R is searched in
order to locate a neighbouring node Rn such that

(,),() ()
nn R R h l hW R W Rω ϕ ω+ + < + , where ϕ is a weight adjustment

It is sensible to choose the neighbour where ϕ is the smallest value in all of B. The reason is that the
adjustment of a weight may cause other routes on Rn to change. By choosing the smallest weight
change, the probability of such unwanted changes is kept low.

5. Conclusions and Future Work
This paper has outlined some ideas and initial algorithms for performing traffic engineering for QoS
enabled networks without the need for extensive modifications to existing routing and avoiding
techniques like MPLS. The approach is based on a two layer traffic engineering with conventional IGP
routing and centralised management plane functionality. It carries the advantages of both layer 3 and
management plane traffic engineering techniques, avoiding complexity in the routing plane as well as
leaving the best-effort Internet intact. Simulation is expected to take place within the next months to
validate if the approach can rival MPLS based solutions, while staying within acceptable limits of
computational complexity.

Acknowledgements
The work on IP traffic engineering is being carried out as part of the IST-MESCAL project. The
author would especially like to thank David Griffin, Professor Chris Todd and Jason Spencer for their
valuable input to the ideas presented here.

References
[1] R. Braden, D. Clark, S. Shenker, “Integrated Services in the Internet Architecture: an

Overview”, Request for Comments, IETF Network Working Group, 1994
[2] M.R. Meyer, et al., “MPLS Traffic Engineering Soft preemption”, Internet Draft, IETF,

2004
[3] Fortz, B., and M. Thorup, “Internet traffic engineering by optimizing OSPF weights”,

paper presented at INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, Vol.2, Iss., 2000

[4] M.Howarth, et al. “D2.1: Initial specification of protocols and algorithms”, IST
MESCAL, 2004

[5] Open Shortest Path First, www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ospf.htm
[6] Awduche, D.O., J. Malcom, J. Agogbua, M. O'Dell, and J. McManus (eds.),

“Requirements for traffic engineering over MPLS”, Request For Comments, IETF
Network Working Group, 1999

